Competition in randomly growing processes

Alexandre Stauffer

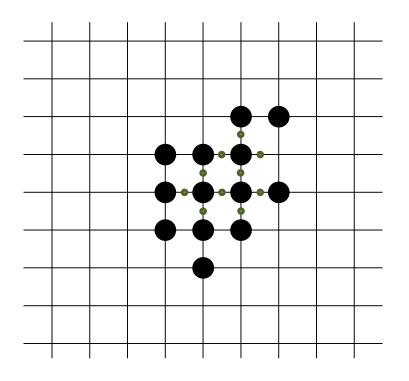
Based on joint works with

Elisabetta Candellero

Tom Finn

Vladas Sidoravicius

First Passage Percolation (FPP)



Shape theorem: forms a ball

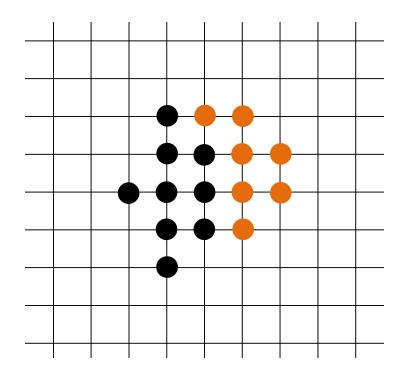
↔ Start from the origin of \mathbb{Z}^d

- Grow by adding boundary edge at rate 1
 - A boundary edge is added u.a.r.
 - Defines a random metric: each edge has random weight ~Exp(1)

First passage percolation (FPP):

- Eden (1961) to model problems in cell reproduction
- Hammersley and Welsh (1965) for general graphs and general passage times

FPP Competition



Two-type Richardson Model

Start from neighboring vertices
✤ Type 1 performs FPP at rate 1
✤ Type 2 performs FPP at rate λ

Each vertex gets occupied by the type that arrives to it first

Main questions

- 1. Which type produces an infinite cluster? (survival)
- 2. Is there coexistence? (i.e., both types produce infinite clusters)

Two-type Richardson Model

Theorem 1 [coexistence] $\mathbb{P}(\text{coexistence}) > 0 \text{ if } \lambda = 1$

O. Haggstrom and R. Pemantle. First passage percolation and a model for competing spatial growth. *Journal of Applied Probability*, 1998

C. Hoffman. Coexistence for Richardson type competing spatial growth models. *Annals of Applied Probability*, 2005

O. Garet and R. Marchand. Coexistence in two-type first-passage percolation models. *Annals of Applied Probability*, 2005

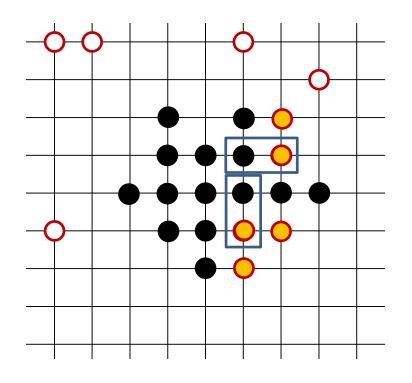
Conjecture $\mathbb{P}(\text{coexistence}) > 0 \text{ iff } \lambda = 1$

Theorem 2 [no coexistence]

 $\mathbb{P}(\text{coexistence}) = 0$ for all but countably many values of λ

O. Haggstrom and R. Pemantle. Absence of mutual unbounded growth for almost all parameter values in the two-type Richardson model. *Stochastic Processes and their applications*, 2000

FPP in hostile environment



No monotonicity! Adding Type 2 seeds may speed up Type 1. Type 1 starts from the origin Perform FPP at rate 1

Type 2 starts from seeds of IID Bern(p), which

- Do not evolve from time 0
- get activated when type 1 tries to occupy it
- After activation, evolve as FPP at rate λ

Main questions

- Which type produces an infinite <u>cluster</u>? (Type 2 is always an infinite set)
- Is there coexistence?

Focus on case $p < 1 - p_c^{\text{site}}$ (i.e., $1 - p > p_c^{\text{site}}$) so $\mathbb{Z}^d \setminus \{\text{seeds}\}$ has an infinite cluster

Motivation

Study of dendritic formation

• Invented as a tool to analyze a model from dendritic growth

Bacteria under starvation

Crystal dendrite

Dielectric breakdown

Spread of fake news

- Type 1 represents spread of fake news
- Type 2 spreads the correct information

First Result

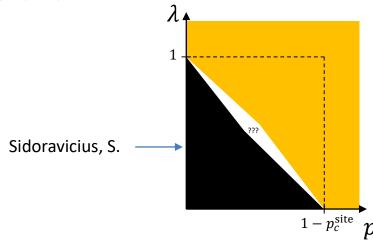
Theorem [Survival of type 1 for small p]

For any $\lambda < 1$, there exists $p_0 \in (0,1)$ such that $\forall p < p_0$

- *1.* $\mathbb{P}(\mathbf{Type 1} \text{ survives}) > 0$
- 2. $\mathbb{P}(\forall t \ge 0, \ \overline{\text{Type1}}_t \supset \text{Ball}(ct)) > 0,$ where $\overline{\text{Type1}}_t = \text{Type1}_t \cup \text{"finite components of Type1}^{c"}$

V. Sidoravicius and A. S. Multi-particle diffusion limited aggregation. Inventiones Mathematicae, to appear

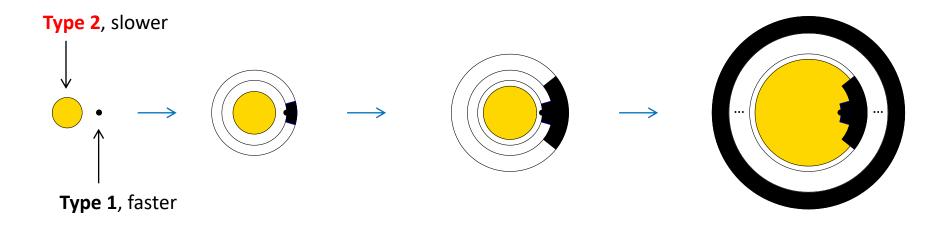
Expected behavior:



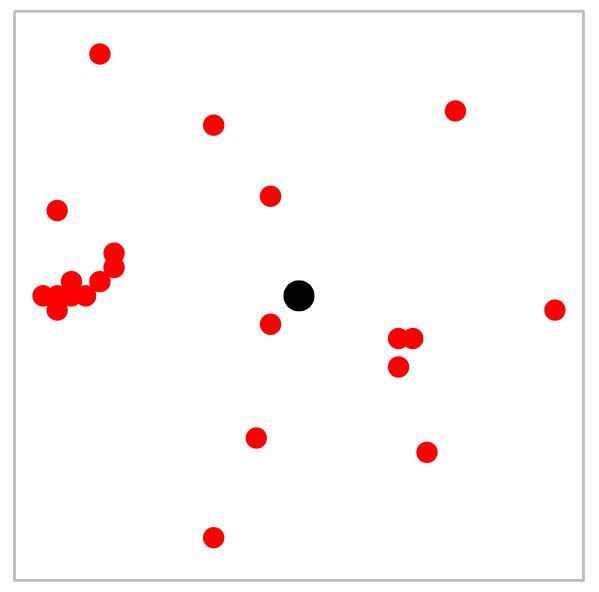
 $\lambda = rate of type 2$ p = density of type 2 seeds

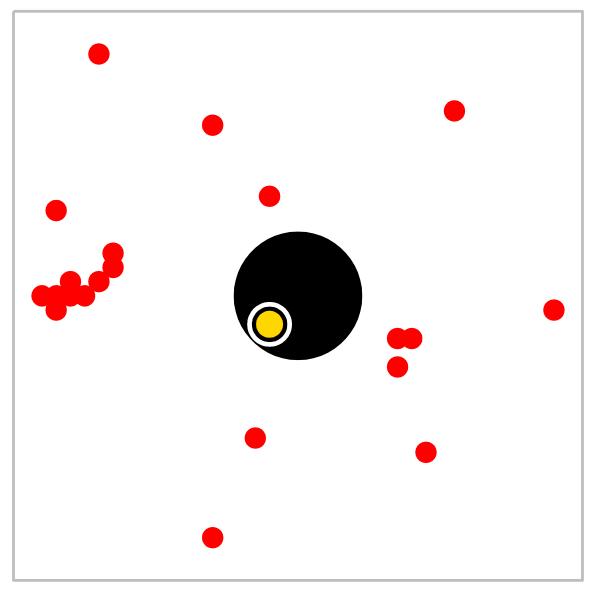
Encapsulation in two-type FPP

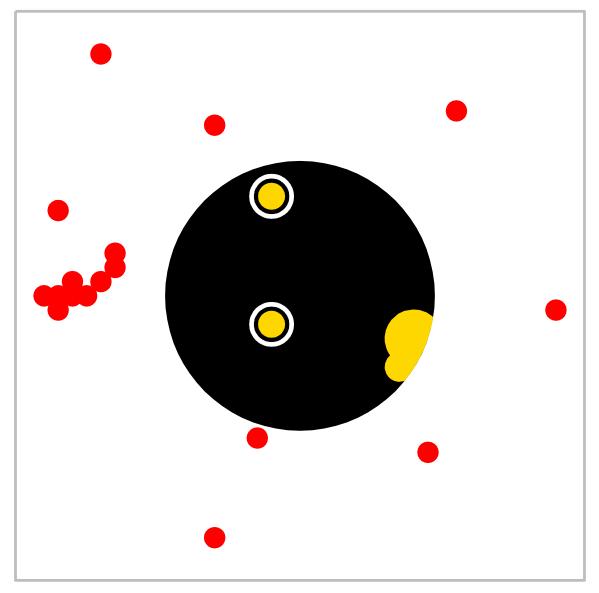
Two type encapsulation (Haggstrom-Pemantle)

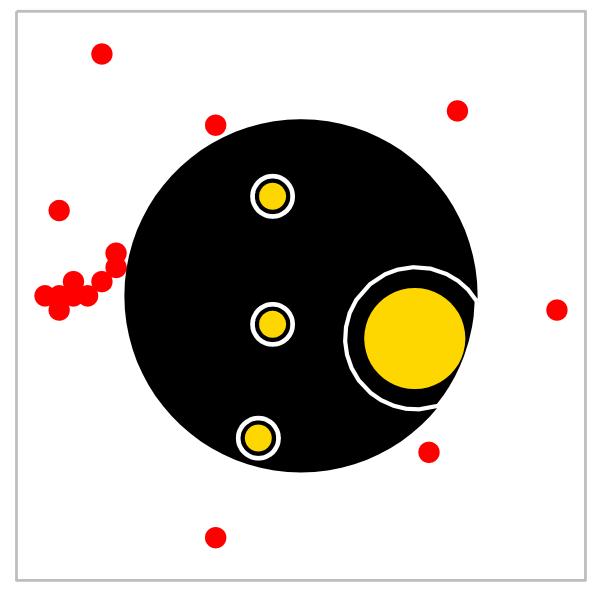


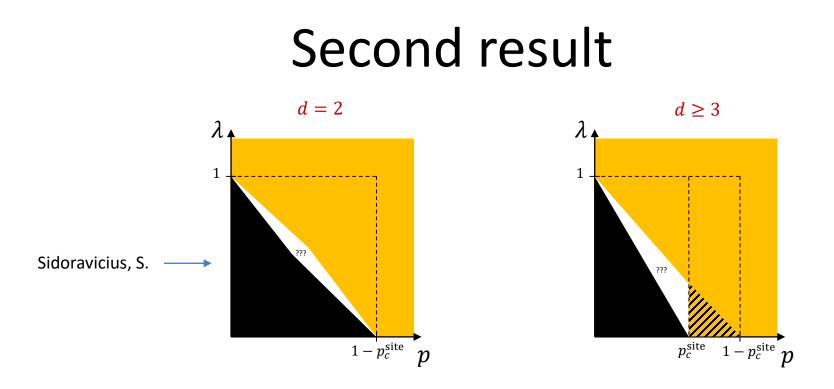
 $\mathbb{P}(\mathbf{Type 1} \text{ surrounds } \mathbf{Type 2}) \rightarrow 1 \text{ as } \operatorname{dist}(\mathbf{type 1}, \mathbf{type 2}) \rightarrow \infty$











Theorem [Survival of type 1 for small λ]

For any $p \in (0, 1 - p_c^{\text{site}})$, there exists $\lambda_0 > 0$ such that $\forall \lambda < \lambda_0$ $\mathbb{P}(\mathbf{Type 1} \text{ survives}) > 0$

T. Finn and A.S., Coexistence in competing first passage percolation in $d \ge 3$, in preparation

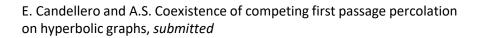
For
$$d \geq 3$$
 we have $\left(p_c^{\text{site}}, 1 - p_c^{\text{site}}\right) \neq \emptyset$

Hyperbolic (and nonamenable) graphs

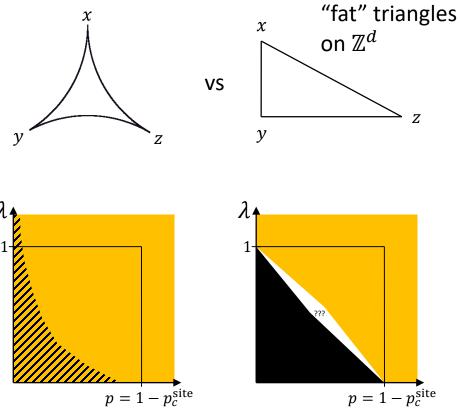
Hyperbolic graphs

• All triangles are δ -thin

Theorem [Type 2 survives] For any $\lambda > 0$, any p > 0 $\mathbb{P}(\text{Type 2 survives}) = 1$



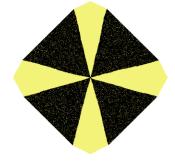
Theorem [Coexistence] For any $\lambda > 0$, there is $p_0 > 0$ s.t. $\forall p < p_0$ $\mathbb{P}(\mathbf{Type 1} \text{ survives}) > 0$



Coexistence: overall picture

Coexistence is known to hold in the following cases:

- Hyperbolic, non-amenable graphs (Candellero, S.)
 Type 2 always survive
- ✤ \mathbb{Z}^d , $d \ge 3$ (Finn, S.)
 Type 2 always survive
- ✤ \mathbb{Z}^d , $d \ge 2$ for deterministic passage times (Sidoravicius, S.)
 Type 1 survive with same speed for all $\lambda < 1$



There is no proof of coexistence when both types have to «fight» to survive