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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Triangle: Three given points

A

B

C

X

Maculan, Fampa, Ouzia, Pinto ISMP2024 - Montréal July 21-26 2024 2 / 50



The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Triangle: Three given points

A

B

C

I

120◦

• Torricelli (1647) pointed out a solution
when the triangle formed by the three
given points does not have an angle
≥ 120.

• Heinen (1837) apparently is the first to
prove that, for a triangle in which an
angle is ≥ 120, the vertex associated
with this angle is the minimizing point.
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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Fermat’s Challenge as an Optimization Problem

A

B

C

αX

Minimize D = ||
−→
XA||+ ||

−→
XB||+ ||

−→
XC ||

The solution is given when

∇D = 0.
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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Fermat’s Challenge as an Optimization Problem

Min D = ||
−→
XA||+||

−→
XB||+||

−→
XC ||

A (xa, ya)

B (xb, yb)

C (xc, yc)

X (x, y)

||
−→
XA|| =

√
(xa − x)2 + (ya − y)2

||
−→
XB|| =

√
(xb − x)2 + (yb − y)2

||
−→
XC || =

√
(xc − x)2 + (yc − y)2

∇D =


∂D
∂x

∂D
∂y

 =

(
0
0

)
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XA||+||
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XC ||
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X (x, y)

∂D
∂x

=
xa − x

||
−→
XA||

+
xb − x

||
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XB||

+
xc − x

||
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XC ||

= 0

∂D
∂y
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||
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XA||
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||
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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Fermat’s Challenge as an Optimization Problem

Min D = ||
−→
XA||+||

−→
XB||+||

−→
XC ||

A (xa, ya)

B (xb, yb)

C (xc, yc)

X (x, y)


∂D
∂x

∂D
∂y

 =


xa − x

||
−→
XA||

ya − y

||
−→
XA||

 +


xb − x

||
−→
XB||

yb − y

||
−→
XB||

 +


xc − x

||
−→
XC ||

yc − y

||
−→
XC ||
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Unitary Vectors Sum
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0
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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Fermat’s Challenge as an Optimization Problem

Min D = ||
−→
XA||+||

−→
XB||+||

−→
XC ||

A

B

C

X

~s

~t~r

α

Three Forces in Equilibrium

∇D = r⃗ + s⃗ + t⃗ = 0⃗
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The History

Challenge of Fermat in the 17th century

Given three points in the plane, find a fourth point such that the sum of its distance to
the three given points is minimum.

Fermat’s Challenge as an Optimization Problem

Three Forces in Equilibrium
(0° < θ, β < 90°)

||r⃗1|| = ||t⃗1|| ⇒ cos(θ) = cos(β)

⇒ θ = β

||r⃗2 + t⃗2|| = ||⃗s|| ⇒ sin(θ) + sin(β) = 1

⇒ sin(θ) = sin(β) =
1
2

⇒ θ = β = 30°

α = 90° + β ⇒ α = 120°.
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The History

An example with four points in the plane...

1

2 3

4(0,0)

(0,1) (1,1)

(1,0) 1

2 3

4(0,0)

(0,1) (1,1)

(1,0)

L = 3

1

2 3

4(0,0)

(0,1) (1,1)

(1,0)

5

L = 2
√
2

α

αα

α

αα

1

2 3

4(0,0)

(0,1) (1,1)

(1,0)

5

6

L = 1 +
√
3

α = 120o
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Problem Definition

Now, consider p given points in Rn.

Steiner Minimal Tree Problem

Find a minimum tree that spans these points using or not extra points, which are called
Steiner points.
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Problem Definition

Some examples of Steiner points in R2

1 2

3

4

1 2

34

5

6

1
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4

5

6

1

2

34

5 7

86

1

2

3

4

5

6 Given point

Steiner point
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Problem Definition

An example in R3: Icosahedron

- 0.5
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0.5

x

- 0.5

0.0

0.5

y
- 0.5

0.0

0.5

z
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Properties

Number of Steiner Points

Given p points x i ∈ Rn, i = 1, 2, . . . , p, the maximum number of Steiner points is p− 2.

Degree of Steiner Points

A nondegenerated Steiner point has degree (valence) equal to 3.

Steiner Points Edges

The edges emanating from a nondegenerated Steiner point lie in a plane and have
mutual angle equal to 120°.
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Steiner Topology

Steiner Topology

It is a topology that satisfies all the Steiner Tree properties.

Number of Topologies (Gilbert and Pollack)

The total number of different topologies with k Steiner points is

Cp,k+2
(p + k − 2)!

k!2k
,

where p is the number of given points in Rn.

Full Steiner Topologies (k = p − 2)

The total number of different topologies with k = p − 2 Steiner points is

1 · 3 · 5 · 7 . . . (2p − 5) = (2p − 5)!!.

For example, if p = 10, the Number of Full Steiner Topologies is equal to

15!! = 2, 027, 025.
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Local Optimization

Example of Local Optimization

x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

Finding the best solution...

Minimize ||x3 − x5||+ ||x2 − x5||+ ||x5 − x6||+ ||x1 − x6||+ ||x4 − x6||

subject to x5 and x6 ∈ Rn.
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Remembering

Given p different points in Rn, the ESTP seeks to find a minimum tree that spans these
points using or not extra points, which are called Steiner points. The length of each edge
is the Euclidean distance between its ends.
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Special Graph

We consider a special graph G = (V ,E) as follows:
Let P = {1, 2, ..., p − 1, p} be the set of indices associated with the given points in
Rn : x1, x2, ..., xp−1, xp, and a set of indices S = {p + 1, p + 2, ..., 2p − 3, 2p − 2}
associated with the Steiner points also in Rn : xp+1, xp+2, ..., x2p−3, x2p−2.
We take V = P ∪ S . We denote [i , j ] i < j , i and j ∈ V an edge of G .
Thus we define E1 = {[i , j ] | i ∈ P, j ∈ S}, E2 = {[i , j ] | i < j , i and j ∈ S}, and
E = E1 ∪ E2.
A tree which is an optimal solution for the ESTP is a sub-graph of G = (V ,E).
We consider the following variables:

x i ∈ Rn, i ∈ S , (1)

yij ∈ {0, 1}, [i , j ] ∈ E . (2)
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MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with p = 6

• 6 given points.

• 4 Steiner points.

• All possible edges among Steiner
points.

• All possible connections between
a given point and a Steiner point.

• All possible edges.

• An example of a set of possible
edges.

1

2

3

4

5

6
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MINLP: Formulations for the Euclidean Steiner Problem

Maculan-Michelon-Xavier (2000) [1]
(P1) : Minimize

∑
[i,j]∈E

||xi − xj|| yij subject to (3)

∑
j∈S

yij = 1, i ∈ P, (4)

∑
i<j,i∈S

ykj = 1, j ∈ S − {p + 1}, (5)

∑
i∈P

yij +
∑

k<j,k∈S

ykj +
∑

k>j,k∈S

yjk = 3, j ∈ S, (6)

x i ∈ Rn
, i ∈ S, (7)

yij ∈ {0, 1}, [i, j] ∈ E , (8)

We consider ||x i − x j || ≈
√∑n

k=1(x
i
k − x j

k )
2 + λ2

Maculan, Fampa, Ouzia, Pinto ISMP2024 - Montréal July 21-26 2024 13 / 50



Maculan, Fampa, Ouzia, Pinto ISMP2024 - Montréal July 21-26 2024 14 / 50



MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: an example with p = 6∑
k<j,k∈S

ykj = 1, j ∈ S − {p + 1}

y7,8 = 1
y7,9 + y8,9 = 1

y7,10 + y8,10 + y9,10 = 1

7 8

7 8

9

7 8

9

7 8

910

7 8

910

7 8

910

7 8

910

7 8

910

7 8

910
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MINLP: Formulations for the Euclidean Steiner Problem

First Formulation: another example
If we don’t considerer ∑

k<j,k∈S

ykj = 1, j ∈ S − {p + 1}

1 2

3

4

1 2

3

54

6
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MINLP: Formulations for the Euclidean Steiner Problem

Fampa-Maculan (2001,2004) [2,3]
(P2) : Minimize

∑
[i,j]∈E

dij subject to (9)

dij ⩾ ||x i − x j || − M(1 − yij ), [i, j] ∈ E , (10)

dij ⩾ 0, [i, j] ∈ E (11)∑
j∈S

yij = 1, i ∈ P, (12)

∑
i<j,i∈S

ykj = 1, j ∈ S − {p + 1}, (13)

∑
i∈P

yij +
∑

k<j,k∈S

ykj +
∑

k>j,k∈S

yjk = 3, j ∈ S, (14)

x i ∈ Rn
, i ∈ S, (15)

yij ∈ {0, 1}, [i, j] ∈ E , (16)

dij ∈ R. (17)

We consider


||x i − x j || ≈

√∑n
k=1(x

i
k − x j

k )
2 + λ2

M = maximum{||x i − x j || for 1 ⩽ i ⩽ j ⩽ p} in general,
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MINLP: Formulations for the Euclidean Steiner Problem

Second Formulation (First Property)

If x̄ j ∈ Rn, j ∈ S and ȳij ∈ {0, 1}, [i, j] ∈ E is an optimal solution, then

• dij = ||ai − x̄ j || ⩾ 0 or dij = 0, for all [i, j] ∈ E1 and

• dij = ||x̄ i − x̄ j || ⩾ 0 or dij = 0, for all [i, j] ∈ E2.

Second Formulation (Second Property)
yij ∈ {0, 1}, [i, j] ∈ E is associated with a full Steiner Topology if, and only if, the following equations are
satisfied: ∑

j∈S

yij = 1, i ∈ P,

∑
k<j,k∈S

ykj = 1, j ∈ S − {p + 1},

∑
i∈P

yij +
∑

k<j,k∈S

ykj +
∑

k>j,k∈S

yjk = 3, j ∈ S,

Second Formulation (Third Property)
In a minimum Steiner tree with more than three terminal nodes, all Steiner points have no more than two
connections with terminal nodes. So, if p > 3,∑

i∈P

yij ⩽ 2, j ∈ S.
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MINLP: Formulations for the Euclidean Steiner Problem

Note that...
When we consider

||x i − x j || ≈

√√√√ n∑
l=1

(x i
l − x j

l )
2 + λ2,

error propagations may happen.
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MINLP: Formulations for the Euclidean Steiner Problem

Note that...
When we consider

||x i − x j || ≈

√√√√ n∑
l=1

(x i
l − x j

l )
2 + λ2,

error propagations may happen.

Example: Regular Hexagon
12

3

4 5

6

• 6 given points.

• Each given point is in a vertex of a
Regular Hexagon.

• Each side of the Hexagon is equal to 1.
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MINLP: Formulations for the Euclidean Steiner Problem

Note that...
When we consider

||x i − x j || ≈

√√√√ n∑
l=1

(x i
l − x j

l )
2 + λ2,

error propagations may happen.

Example: Regular Hexagon
12

3

4 5

6

• Objective Function: 5

• λ2 = 10−8

12

3

4 5

6

10

79

8

• Objective Function: 5.196 = 3
√

3

• λ2 = 10−6
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MINLP: Formulations for the Euclidean Steiner Problem

Ouzia-Maculan (2018) [4]

(P3) : Minimize
∑

[i,j]∈E

√√√√ n∑
k=1

d2
ijk subject to (18)

−yij ≤ dijk ≤ yij , [i, j] ∈ E , k = 1, 2, ..., n, (19)

−(1 − yij ) + (x i
k − x j

k ) ≤ dijk ≤ (x i
k − x j

k ) + (1 − yij ), [i, j] ∈ E , k = 1, 2, ..., n, (20)∑
j∈S

yij = 1, i ∈ P, (21)

∑
i<j,i∈S

ykj = 1, j ∈ S − {p + 1}, (22)

∑
i∈P

yij +
∑

k<j,k∈S

ykj +
∑

k>j,k∈S

yjk = 3, j ∈ S, (23)

x i ∈ Rn
, i ∈ S, (24)

yij ∈ {0, 1}, [i, j] ∈ E , (25)

dijk ∈ R. (26)
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MINLP: Formulations for the Euclidean Steiner Problem

Ouzia-Maculan (2018) [4]

(P4) : Minimize
∑

[i,j]∈E

√
dij subject to (27)

dij ⩾
n∑

k=1

(x i
k − x j

k )
2 − (1 − yij ), [i, j] ∈ E , (28)

dij ⩾ 0, [i, j] ∈ E (29)∑
j∈S

yij = 1, i ∈ P, (30)

∑
i<j,i∈S

ykj = 1, j ∈ S − {p + 1}, (31)

∑
i∈P

yij +
∑

k<j,k∈S

ykj +
∑

k>j,k∈S

yjk = 3, j ∈ S, (32)

x i ∈ Rn
, i ∈ S, (33)

yij ∈ {0, 1}, [i, j] ∈ E , (34)

dij ∈ R. (35)
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MINLP: Formulations for the Euclidean Steiner Problem

Maculan-Ouzia-Pinto (2020) [5]
(P5) : Minimize

∑
[i,j]∈E

dij subject to (36)

d2
ij ≥

n∑
k=1

t2ijk , [i, j] ∈ E , (37)

−yij ≤ tijk ≤ yij , [i, j] ∈ E , k = 1, 2, ..., n, (38)

−(1 − yij ) + (x i
k − x j

k ) ≤ tijk ≤ (x i
k − x j

k ) + (1 − yij ), [i, j] ∈ E , k = 1, 2, ..., n, (39)∑
j∈S

yij = 1, i ∈ P, (40)

∑
i<j,i∈S

ykj = 1, j ∈ S − {p + 1}, (41)

∑
i∈P

yij +
∑

k<j,k∈S

ykj +
∑

k>j,k∈S

yjk = 3, j ∈ S, (42)

x i ∈ Rn
, i ∈ S, (43)

yij ∈ {0, 1}, [i, j] ∈ E , (44)

dij ≥ 0, [i, j] ∈ E . (45)
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MINLP: Formulations for the Euclidean Steiner Problem

Maculan-Ouzia-Pinto (2020) [5]

We added to model (P5) many families of constraints to eliminate isomorphic trees,
based on the idea presented by Smith in his paper [6].

The author presents a bijection between every possible full Steiner topology on p terminal
points and vectors in a ∈ Np3, where 1 ≤ ai ≤ 2i + 1, i = 1, ..., p3.

The edges are labeled and each ai indicates which edge the (i + 1)-th Steiner point will
be placed on.

We call the resulting model (P6).

1

2 3

t1

t2 t3

s1

ap−3
2p − 3

ap−3 2p − 4

tp

sp−2
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MINLP: Formulations for the Euclidean Steiner Problem

To represent the Smith vector, we define the binary variables

vij ∈ {0, 1}, i = 1, . . . , p − 3, j = 1, . . . , 2i + 1,

that assume value 1 if ai = j . We must have

2i+1∑
j=1

vij = 1, ∀ i = 1, . . . , p − 3. (46)
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MINLP: Formulations for the Euclidean Steiner Problem

To control the edges labeling, we define the binary variables

eijkl ∈ {0, 1}, i = 0, . . . , p − 3, j = 1, . . . , 2i + 3, k ∈ {1, 2}, l = 1, . . . , 2p − 2.

We will have eijkl = 1 if, in stage i of the construction of the tree, vertex k of edge j is l .

We must have
2p−2∑
l=1

eijkl = 1, ∀ i , j , k. (47)

along with some initial conditions (corresponding to the null-vector or the 3-terminal
topology):

e0j1j = 1, j = 1, 2, 3, (48)

e0j2(p+1) = 1, j = 1, 2, 3. (49)
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MINLP: Formulations for the Euclidean Steiner Problem

In iteration i > 0, the new Steiner point will be placed in the middle of edge ai , or, in our
notation, in the middle of edge j , such that vij = 1. We write, for all
i = 1, . . . , p − 3, j = 1, . . . , 2i + 3, l = 1, . . . , 2p − 2,

eij1l = e(i−1)j1l , (50)

−vij + e(i−1)j2l ≤ eij2l ≤ e(i−1)j2l + vij , (51)

vij ≤ eij2(i+1+p) ≤ 2 − vij . (52)

For the two new edges added at each iteration, we have, for all
i = 1, . . . , p − 3, l = 1, . . . , 2p − 2,

ei(2i+2)1(i+3) = 1, (53)

ei(2i+2)2(i+1+p) = 1, (54)

ei(2i+3)1l =
2i+1∑
j=1

vij · e(i−1)j2l , (55)

ei(2i+3)2(i+1+p) = 1. (56)
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MINLP: Formulations for the Euclidean Steiner Problem

We can linearize the binary product in equation (55) using the McCormick inequalities.

Finally, we relate variables eijkl to the variables yij . For all
i = 1, . . . , 2p − 2, j = p + 1, . . . , 2p − 2, i < j , k = 1, . . . , 2p − 3,

yij ≥ e(p−3)k1i + e(p−3)k2j − 1. (57)
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Numerical experiments

The experiments were performed on a machine equipped with an Intel(R) Xeon(R) i7
8700 CPU @ 3.20GHz with 12 cores and 64GB DRAM of memory.

Models (P1) to (P4) were solved using BARON 21.1.7.
Models (P5) and (P6) were solved using XPRESS 8.11.0.

Tetrahedron
obj time (s) nodes

P1 0.813 9 839
P2 0.813 0.5 11
P3 0.955 0.09 5
P4 0.813 300 60493
P5 0.813 0.01 11
P6 0.813 0.01 5
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Numerical experiments

Octahedron
obj time (s) nodes gap

P1 0.9560 10800∗ 160633 95.9
P2 0.9560 277 1803 0
P3 1.2075 38 1517 0
P4 0.9562 10800∗ 418903 82.7
P5 0.9560 1 1797 0
P6 0.9560 0.01 209 0

∗ = Execution aborted after 3 hours.
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Numerical experiments

Cube
obj time (s) nodes gap

P1 1.1924 10800∗ 79513 99.9
P2 1.1924 10800∗ 30291 99.9
P3 1.3458 10800∗ 128019 79.8
P4 1.2003 10800∗ 151437 99.9
P5 1.1924 634 1043859 0
P6 1.1924 16 20869 0

∗ = Execution aborted after 3 hours.
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Numerical experiments

Icosahedron
obj time (s) nodes gap

P1 1.6571 10800∗ 877 99.9
P2 1.6649 10800∗ 1025 99.9
P3 1.98 10800∗ 1616 99.8
P4 1.7953 10800∗ 4253 99.9
P5 1.6319 10800∗ 11153041 94.2
P6 1.6256 10800∗ 5192564 89.2

∗ = Execution aborted after 3 hours.
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Numerical experiments

Dodecahedron
obj time (s) nodes gap

P1 2.2617 10800∗ 936 99.9
P2 2.5618 10800∗ 14 99.9
P3 3.182 10800∗ 222 99.7
P4 2.602 10800∗ 38 99.9
P5 2.3516 10800∗ 3888898 99.9
P6 2.6449 10800∗ 98170 99.9

∗ = Execution aborted after 3 hours.
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Heuristic

Main idea: starting with the Fermat point, add one Steiner point at a time.

Before all Steiner points are added, there will be at least one Steiner point with degree
greater than 3. Let s be one of these points. A new Steiner point will be added to the
tree to reduce the degree of s.
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Heuristic - Example 1

t1

t2

t3

t4

t5

t6
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Heuristic - Example 1

t1

t2

t3

t4

t5

t6

Fermat point
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Heuristic - Example 1

t1

t2

t3

t4

t5

t6

mininum angle?
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Heuristic - Example 1

t1

t2

t3

t4

t5

t6

This is indeed the optimal Steiner tree.
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Heuristic - Example 2

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5
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Heuristic - Example 2

t1

t2

t3

t4

t5

?

From the topology in the left,
no choice for the new Steiner
point location will result
in the optimal Steiner tree
(depicted in the right).

t1

t2

t3

t4

t5
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Heuristics

Two new heuristics for the Euclidean Steiner Tree Problem in Rn [7]:

Heur1 : always choose minimum angle

Heur2 : tests all angles and pick the smallest resulting tree
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Heuristics - Computational complexity

Let D = max
i,j=1,...,p

∥ ai − aj∥ .

Consider a fixed topology and let E be the set of edges of this tree. An interior-point
algorithm∗ can compute an ε-optimal solution in

O

(√
|E |

(
log

(
D

ε

)
+ log |E |

))
iterations, where |E | is the number of edges in the tree.

Using D = 1 and ε = 10−16,√
|E |

(
log10

(
D

ε

)
+ log10|E |

)
≤

√
2p − 3

(
16 + log10(2p − 3)

)
.

Therefore, the computational complexity has order of
√
p +

√
p log(p) .

∗G. Xue, Y. Ye. An efficient algorithm for minimizing a sum of Euclidean norms with
applications. SIAM Journal on Optimization 4(7):1017–1036, 1997.
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Heuristics - Computational complexity

Heuristic 1 (D = 1 and ε = 10−16):

The search for the minimum angle is most costly in the first iteration, when there
are p edges connecting every terminal to the Fermat-Weber point.

There are p (p − 1)/2 = O(p2) pair of edges to have their angles computed.
Therefore, at each iteration, the quantity of operations has order of

p2 +
√
p +

√
p log(p) .

Then the total of computational operations performed by Heuristic 1, after O(p)
iterations, has order of

p3 + p
√
p + p

√
p log(p) .
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Heuristics - Computational complexity

Heuristic 2 (D = 1 and ε = 10−16):

The model for a fixed topology has to be solved for each pair of consecutive edges.
Then each iteration of Heuristic 2 has order of

p2(
√
p +

√
p log(p)) .

As Heuristic 2 performs p − 3 iterations, the total of computational operations
performed by Heuristic 2 has order of

p3(
√
p +

√
p log(p)) .
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Numerical experiments

Platonic solids:

Instance p n Exact Heur1 Heur2 t1(s) t2(s)
Tetrahedron 4 3 2.439 2.439 2.439 0.1 0.3
Octahedron 6 3 2.868 2.868 2.868 0.3 2

Cube 8 3 6.196 6.196 6.196 0.5 4.5
Icosahedron 12 3 18.553 18.553 18.664 0.9 18

Dodecahedron 20 3 22.911∗ 23.125 23.003 2 76

* Best solution found after 30 days of execution of Smith’s algorithm [6].
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Numerical experiments

Hypercubes:

p n Conjecture∗ Heur1 Heur2 t1(s) t2(s)
16 4 13.124 13.124 13.124 1.4 38
32 5 26.981 26.981 26.981 5.5 247
64 6 54.694 54.694 54.694 24 1810
128 7 110.1192 110.286 110.2189 147 15000
256 8 220.9704 221.21 221.17 1060 150000

* Conjecture [6]: optimal solution value is
(
2n−1 − 1

)√
3 + 1.
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Numerical experiments

Hypercube in R7

Conjecture Heur2

The graphs were drawn using the tool availabe on the website https://www.yworks.com/yed-live/
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Numerical experiments

Instance∗ p n Exact Heur1 Heur2 t1(s) t2(s)
3-triangles 9 2 20.526 20.626 20.526 0.3 4

Ladder 10 2 8.3451 8.4641 8.3451 0.3 4.8

3-triangles:

Heur1 Heur2 (opt. sol.)
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Numerical experiments

Instance∗ p n Exact Heur1 Heur2 t1(s) t2(s)
3-triangles 9 2 20.526 20.626 20.526 0.3 4

Ladder 10 2 8.3451 8.4641 8.3451 0.3 4.8

Ladder:

Heur1 Heur2 (opt. sol.)

∗ Instances from D.R. Dreyer and M.L. Overton. Two heuristics for the Euclidean Steiner tree
problem. Journal of Global Optimization 13:95–106, 1998.
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Numerical experiments

p n Heur2 tie ILS avg ρ std
8 3 242 417 341 0.95074 0.022992
9 3 233 344 423 0.95124 0.021056
10 3 187 289 524 0.95260 0.021165
11 3 167 247 586 0.95427 0.021401
10 4 147 240 613 0.93231 0.020701
10 5 151 231 618 0.91502 0.019970

Instances from V. do Forte, F.M.T. Montenegro, J.A.M. Brito and N. Maculan. Iterated local
search algorithms for the Euclidean Steiner tree problem in n dimensions. International

Transactions in Operational Research (ITOR) 23(6):1185–1199, 2016.
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Numerical experiments

Random instances:

Heur1 Heur2
p n opt gap time opt gap time
5 2 98% 0.01% 0.07 100% 0% 0.48
5 3 96% 0.03% 0.06 99% 0.002% 0.38
5 4 97% 0.005% 0.06 99% 0.004% 0.36
5 5 98% 0.01% 0.06 100% 0% 0.38
10 2 66% 0.7% 0.3 74% 0.5% 5
10 3 53% 0.6% 0.3 52% 0.5% 5
10 4 56% 0.5% 0.3 48% 0.5% 4.3
10 5 59% 0.2% 0.3 55% 0.3% 4.4
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Numerical experiments

Random instances:

Heur1 Heur2
p n gap time gap time
15 2 2% 0.6 1% 14
50 2 8% 9 2% 459
100 2 14% 60 3% 4530
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