
Web Services
Technology

Paulo F. Pires & Marta Mattoso
UFRJ

paulopires@nce.ufrj.br marta@cos.ufrj.br
http://genesis.nce.ufrj.br/dataware/hp/pires

http://www.cos.ufrj.br/~marta

Summary
What are Web services?
Web services tecnologies:

SOAP
WSDL
UDDI

Examples
Java
Delphi

Architecting Web Services
Applying Web Services Technology
Web Services & Semantic Web

What are Web
Services?

Today’s Web
Web designed for application to human
interactions
Served very well its purpose:

Information sharing: a distributed content
library.
Enabled B2C e-commerce.
Non-automated B2B interactions.

Automated interactions?
If you wanted to create an application to
process a page, you could do it, but you
would have to perform HTML scraping.

What is a Web Service?
“…The Web can grow significantly in
power and scope if it is extended to
support communication between
applications, from one program to
another."

-- From the W3C XML Protocol Working Group
Charter

What is a Web Service?
any service that is made available over the
web.
any service that enables two computer
applications to exchange data.
primarily, but not exclusively based on:

XML for data encoding
HTTP for data transport

Example: Credit Card Verification

Browser Example.com
Company

Credit
Card Web

Service
XML

“Verify Credit Card: 33333333”

“Credit Card: OK”

This functionality already exists. However, the goal of web services
is to standardize the process, enabling “plug and play” functionality.

P2P Integration - Problems

DI
A L

-IN Toll-free 1-888-390-4711
International: 1-484-630-0913
Passcode: Web Services

Designing Web Services
Goals

Enable universal interoperability.
Widespread adoption, ubiquity: fast!

Compare with the good but still limited adoption of the
OMG’s OMA.

Enable (Internet scale) dynamic binding.
Support a service oriented architecture (SOA).

Efficiently support both open (Web) and more
constrained environments.
Diminish the pain of incompatibility (languages,
operating systems, & network protocols)

Web services is an effort to build a distributed
computing platform for the Web

Designing Web Services
Requirements

Based on standards. Pervasive support is critical.
Minimal amount of required infrastructure is
assumed.

Only a minimal set of standards must be implemented.

Very low level of application integration is expected.
But may be increased in a flexible way.

Focuses on messages and documents, not on
APIs.

Web Services Model

Web service applications are
encapsulated, loosely coupled Web
“components” that can bind
dynamically to each other

Web service applications are
encapsulated, loosely coupled Web
“components” that can bind
dynamically to each other

Why Web Services?
Two key factors

ubiquity
ease of use

Interoperable
OS and language neutral
Java & .NET integration: simple and cheap

Everybody supports or will support web services
need to support web services to facilitate integration

Non-invasive
Based on ubiquitous protocols: HTTP/SMTP
Complements existing technologies

Statistics (Cristal Ball) - USA
Gartner estimates the web service software market to be
$1.7 billion by 2003

Evans Data estimates that 63% of all developers will be
working on web-service projects by the end of 2003

37% are working on web-service projects already

Butler Group says over 76% of CIOs believe web
services to be highly significant for the way they deliver
IT services

Jupiter Media Matrix recently found that 60% of CEOs
planned to use web services in 2002

A recent InfoWorld survey showed that 28% of
companies are now using web services

another 23% are planning to introduce them this year

Component Tecnology & WS
CORBA, EJB, and COM solve many
integration problems
However…

Each technology erroneously assumes that it is
ubiquitous
Industry support for each component standard
is fragmented
Complex Development
Result: “Islands of Interoperability”

Integration Problem
It’s hard to Integrate

Object model differences
Communication protocol differences
Type system differences
Exception handling differences:

especially runtime vs. application exceptions

Example: calling from CORBA to EJB
requires reverse-mapping EJB into CORBA IDL
resulting IDL is not clean

The mapping Problem
Whenever a new technology (such as Web
Services) comes along, some attempt to map it
directly to their existing technologies
This never really works

Partially integration:
COM-CORBA mapping and the reverse Java-to-IDL mapping

But impedance mismatches between the systems
cause pain and do not allow for full interworking

Abstractions & Integration Types
Method-oriented integration:

Based on exposing through one technology the
methods of a service implemented using a different
technology

Component systems are largely method-oriented
Services exposed in this manner must be properly
abstracted for the different technology:

hide implementation technology details
Document-oriented integration:

Based on mapping the data understood by one
system into data understood by another

Message-Oriented Middleware (MOM) and Enterprise
Application Integration (EAI) systems are often document-
oriented

Web Services Everywhere?
Sometimes the hype gets a little too much…

Web services are complementary to
technologies such as J2EE, CORBA, etc.

they do not replace them!

They give us a web-friendly “least common
denominator” for systems integration

definitely the simplest way to integrate .NET, CORBA,
J2EE, etc.

Granularity, Coupling & Abstraction

Coarse grained
Low Couplin

High Abstraction

WSIDLEJBPOO

High Coupling

Fine grained

Low
Abstraction

A new (& needed) layer of abstraction

UNIX
Existing/New
Applications

Windows
XP/New

Applications

Java CLI

J2EE / CORBA / .NET Framework

Web Services

Web Services Offer

Main program

Fctn 1 Fctn nMP

MP Func n

MP Fctn 1 Fctn n

MP Fnct n

Process 1 Process 2

Monolithic

Static linking

Dynamic linking

Remote Procedure
Call

Web Service SOAP / XML

Proxy

Proxy

Binary message

Web Services: Evolution of Technology

Architectural Perspective
A web service is essentially a standards-
based facade, or wrapper for accessing
non-standardized middleware components

Business
Service

Li
st

en
er

XML Request

XML Response

Web Server

m
id

d
le

w
ar

e

Web
Service

Web Services
Framework

Web Services Stack

HTTP Syntax (XML)

DiscoveryDiscovery

Directory (UDDI)

DescriptionDescription

Structure
(XML Schema)

Service
Description

(WSDL)

WireWire

Syntax (XML)

XML Protocol
(SOAP)

Syntax (XML)

Protocol for Publishing Protocol for Publishing
and Discovering Services.and Discovering Services.

Data StructureData Structure
Format for Format for
Describing Describing
ServicesServices

Protocol for Protocol for
Data ExchangeData Exchange

Service-Oriented Architecture

Service
Broker

Service
User

Service
Provider

Find

Pu
bl

is
h Bind

Let me talk to you (SOAP)Let me talk to you (SOAP)

Web Services Protocols

How do we talk? (WSDL)How do we talk? (WSDL)

Web Web
ServiceService

WebWeb
Service Service

ConsumerConsumer

UDDIUDDI

Find a ServiceFind a Service

serviceservice response (XML)response (XML)

http://service.com/svc1

serviceservice descriptions (XML)descriptions (XML)

http://service.com/?WSDL

HTML with link to WSDLHTML with link to WSDL

http://www.uddi.org

Soap

Communication

Motivation
Many Distributed applications communicate using
remote procedure calls (RPC) between distributed
objects like DCOM and CORBA.
HTTP isn’t designed for those objects, so RPC calls
aren’t easily adapted to the Internet.
Security problems exist for those methods of RPC, so
most firewalls and proxy servers are set to block this
traffic.
HTTP is supported by all Internet browsers and servers,
so SOAP presents a nice protocol for doing RPC.

SOAP - Goal
The goal behind the SOAP/ XMLP work is
a protocol that is neutral on everything
except the XML representation of data:

Transport
Programming language
Object model
Operating system
Etc.

SOAP Features
Lightweight communication protocol
Support different models:

one-way, request/response, multicast, etc..
Designed to communicate via HTTP

Not restricted to
Not tied to any component technology
Not tied to any programming language
Based on XML
Simple and extensible

SOAP Message Exchange Model
Fundamentally one-way
Can be combined to achieve patterns like
request/response
Messages can be routed along a message
path

Envelope:
Defines the content of the message
MUST be associated with SOAP envelope
namespace:
http://www.w3.org/2001/06/soap-envelope

Header (optional):
contains header information

application specific information about the SOAP
message.

Body:
contains call and response information

SOAP Message - General Structure

That’s the basics…example
A simple SOAP XML document requesting the price of
soap.

A simple SOAP XML document requesting the price of
soap.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>DIS</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP

Vendor AVendor A Vendor BVendor B

This process is transparent for the client and the component

ClientClient
applicationapplication ComponentComponent

XML/HTTPXML/HTTP

22

2. Soap proxy intercepts the call, constructs and transmits XML request message

SoapSoap
listenerlistener

33

3. Soap listener receives, parses and validates request

44

4. Listener calls component message

566

5. Listener takes the result of the call, constructs and transmits the XML response

6. Proxy receives and parses the response, returning the result to the client

SoapSoap
proxyproxy

11

1. Client application makes a call

SOAP RPC Conventions
Information needed for a method call:

The URI of the target object (namespace)

Example:

<SOAP-ENV:Body>

<p:GetQuote xmlns:p=“http://example.com/StockQuotes”>

<Symbol>AMZN</Symbol>

</p:GetQuote>

</SOAP-ENV:Body>

SOAP RPC Conventions
Information needed for a method call:

The URI of the target object
A method name

Example:

<SOAP-ENV:Body>

<p:GetQuote xmlns:p=“http://example.com/StockQuotes”>

<Symbol>AMZN</Symbol>

</p:GetQuote>

</SOAP-ENV:Body>

SOAP RPC Conventions
Information needed for a method call:

The URI of the target object
A method name
The parameters to the method

Example:

<SOAP-ENV:Body>

<p:GetQuote xmlns:p=“http://example.com/StockQuotes”>

<Symbol>AMZN</Symbol>

</p:GetQuote>

</SOAP-ENV:Body>

SOAP RPC Conventions
Information needed for a method call:

The URI of the target object
A method name
The parameters to the method
Optional header data

Example:

<SOAP-ENV:Body>

<p:GetQuote xmlns:p=“http://example.com/StockQuotes”>

<Symbol>AMZN</Symbol>

</p:GetQuote>

</SOAP-ENV:Body>

An example

www.stockquoteserver.com

float GetLastTradePrice(symbol)

The process:

Application
Middleware

SOAP
HTTP

Application
Middleware

SOAP
HTTP

www.ufrj.br www.stockquoteserver.com

Request

Reply
Error

SOAP HTTP Request Example
POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml; charset=“utf-8”

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=

“http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>AMZN</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

HTTP Header

SOAP Extensions

XML payload

SOAP HTTP Response Example
HTTP/1.1 200 OK

Content-Type: text/xml; charset=“utf-8”

Content-Length: nnnn

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”

SOAP-ENV:encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/” >

<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m=“Some-URI”>

<Price>34.5</Price>

</m:GetLastTradePriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP + Attachments
Mechamism for encoding SOAP msgs in a
MIME multipart structure and associating it
with any parts in that structure
SOAP msg

Root of the structure
Referes to attachments using uri

cid:prefix (content ID)

SOAP + Attachments example
Start with a SOAP message...

<SOAP-ENV:Envelope xmlns:SOAP-ENV=“...">

<SOAP-ENV:Body>

..

<Person>

</Person>

..

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP + Attachments example
Add a link to an external image…

<SOAP-ENV:Envelope xmlns:SOAP-ENV=“...">

<SOAP-ENV:Body>

..

<Person>

<Picture href=“http://example.com/myPict.jpg” />

</Person>

..

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP + Attachments example
Add MIME packaging…

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary;
type=text/xml;

start="<soapmsg.xml@example.com>“

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: soapmsg.xml@example.com

<SOAP-ENV:Envelope xmlns:SOAP-ENV=“...">

<SOAP-ENV:Body>

..

<Person>

<Picture href=“http://example.com/myPict.jpg” />

</Person>

..

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary--

SOAP + Attachments example
Add MIME part and link to it…

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

start="<soapmsg.xml@example.com>“

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: soapmsg.xml@example.com

<SOAP-ENV:Envelope xmlns:SOAP-ENV=“...">

<SOAP-ENV:Body>

<Person>

<Picture href=“cid:myPict.jpg@example.com” />

</Person>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary

Content-Type: image/jpg

Content-Transfer-Encoding: binary

Content-ID: <myPict.jpg@example.com>

...binary image...

--MIME_boundary--

SOAP

Java APIs

Java API for Web Services
Based on remote procedure call (RPC) mechanism

client’s remote method call is converted to a SOAP msg and sent
to the service as a HTTP request
service receives the request, translates the SOAP msg into a
method call and invokes it
and vice versa with the result of the method call

Implementation details invisible to client and service
SOAP messages as Java objects

SAAJ (SOAP with Attachments API for Java)

Programming Model
JAX-RPC client can access a web service not running on Java
platform
JAX-RPC service can be accessed by a non Java client

SAAJ Classes

SOAPMessageSOAPPart AttachmentPart

Node

SOAPElement

SOAPBody SOAPHeader

SOAPBodyElement SOAPHeaderElement

SOAPEnvelope

SOAPFault

SOAPFaultElement

* *

*

JAX-RPC
JAX-RPC client invocation models

statically defined stub model
dynamic proxy invocation model
dynamic invocation interface (DII)

JAX_RPC JAX_RPC

stubs

Client App

ties

Service

SOAP msg
HTTP

JAX-RPC Physical Architecture

Transport
Protocol (SOAP)

Server Side JAX-RPC
Runtime System

JAX-RPC API JAX-RPC API
Client Side JAX-RPC

Runtime System

Stub

Service EndpointService Client

Dispatch

Container

A Simple Example
Writing the Client Program

Calculator service
Using Dynamic Invocation Interface (DII)

Calculator Client – using JAX-RPC
import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import javax.xml.namespace.QName;

public class CalcClient
{

public static void main(String [] args) {
try {

String endpoint = "http://localhost:8080/axis/Calculator.jws";
Service service = new Service();
Call call = (Call) service.createCall();

call.setTargetEndpointAddress(new java.net.URL(endpoint));
call.setOperationName(new QName("http://localhost:8080/axis/

Calculator.jws/axis/Calculator.jws",
"add"));

Integer ret = (Integer) call.invoke(new Object[]
{ new Integer(5),
new Integer(6)});

System.out.println("Result = " + ret);
} catch (Exception e) {

System.err.println("ERROR! : " + e.toString());
}

}
}

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import javax.xml.namespace.QName;

public class CalcClient
{

public static void main(String [] args) {
try {

String endpoint = "http://localhost:8080/axis/Calculator.jws";
Service service = new Service();
Call call = (Call) service.createCall();

call.setTargetEndpointAddress(new java.net.URL(endpoint));
call.setOperationName(new QName("http://localhost:8080/axis/

Calculator.jws/axis/Calculator.jws",
"add"));

Integer ret = (Integer) call.invoke(new Object[]
{ new Integer(5),
new Integer(6)});

System.out.println("Result = " + ret);
} catch (Exception e) {

System.err.println("ERROR! : " + e.toString());
}

}
}

SOAP Demo

tcpmon
org.apache.axis.utils package
java org.apache.axis.utils.tcpmon

watch classpath…
listen port is port that the client makes the
request to (tcpmon port)
target hostname - host running web
server
target port – port that web server running
at

Viewing SOAP msgs
tcpmon utility

Web Server
(port 8080)

Client

tcpmon
(port 8100)

http://localhost:8100/… http://localhost:8080/…

Analysing CalClient App

The details of the actual SOAP protocol
were handled by the Call and Response
objects.
The developer focused:

on finding the correct data to invoke the
service,
Processing the response

Analysing CalClient App
The SOAP client hard-coded:

URL,service ID, method name,parameters,
etc.

What if we could discover these things at
runtime?

WSDL UDDI

WSDL

Describing Web Services

What is WSDL?
An XML format for describing web
services

To the Consumer: How to use the service
(e.g., “To use my shopping cart, send these SOAP messages
over HTTP to http://myservice.net/cart”)

To the Server: How to configure the service
(e.g., “Make my shopping cart available using SOAP over HTTP
at http://myservice.net/cart”)

To the Registry: How to find the service
(e.g., “Find me all the shopping carts I can talk to.”)

What’s a WSDL File?

A WSDL file is an XML document.
The root is the <definitions> element:

defines the namespaces we’ll use.

<definitions name="StockQuote"
targetNamespace="http://example.com/stockquote.wsdl"
xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xsd1="http://example.com/stockquote.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/>

What’s in a WSDL File?
The <definitions> element has up to six
different child elements:

Types
Messages
Port types
Bindings
Ports
Services

WSDL Elements by Example

Shopping Cart

Add

Remove

List

Operation

WSDL Terms

Port Type

Shopping Cart Service

Service

WSDL Elements by Example

Shopping Cart

Add

Remove

List

WSDL Terms

Operation

Port Type

HTTP
SOAP

HTTP
POST

Bindinghttp://myservice.net/soap/cart

http://myservice.net/cart

Port

WSDL Elements by Example

Shopping Cart Service

Operation

Service

Binding

Port Type

WSDL Terms

<soap:envelope …>
<soap:body>
<soap:fault>
<faultcode>…
<faultstring> …

</soap:fault>
<soap:body>

<soap:envelope>

Fault

<soap:envelope …>
<soap:body>
<soap:fault>
<faultcode>…
<faultstring> …

</soap:fault>
<soap:body>

<soap:envelope>

Fault

<soap:envelope …>
<soap:body>
<soap:fault>
<faultcode>…
<faultstring> …

</soap:fault>
<soap:body>

<soap:envelope>

Faults

Message

AddItemInput

AddItemOutput

Port

Shopping Cart

Add

Remove

List

HTTP
SOAP

HTTP
POST

What does WSDL Describe?
Abstract Concepts

Port Types (e.g., shopping Cart)
Operations (e.g., add, remove, list)
Messages (i.e., inputs, outputs and faults)
Data types (i.e., schemas)

Concrete Bindings
Data encoding styles (e.g., SOAP encoding)
Transport protocols (e.g., HTTP, SMTP)
Network addresses (e.g., http://myservice.net/cart)

How does WSDL Describe Services?
<definitions name=“ShoppingCartDefinitions”

xmlns=“http://schemas/xmlsoap.org/wsdl” targetNamespace= … >
<types> … </types>
<message name=“AddItemInput”> … </message>
<message name=“AddItemOutput”> … </message>
<portType name=“ShoppingCart”> … </portType>
<binding name=“CartHTTPXMLBinding” type=“tns:ShoppingCart”>…
<binding name=“CartSOAPBinding” type=“tns:ShoppingCart”>…
<service name=“ShoppingCartService”>

<port name=“HTTPXMLCart” binding=“tns:CartHTTPXMLBinding”>
…

<port name=“SOAPCart” binding=“tns:CartSOAPBinding”> …
</service>
<import namespace=“…” location=“…”>

</definitions>

Data Types
You can define datatypes, which are
typically based on XML Schema:

however, other type systems are permitted
<types>

<schema targetNamespace=“http://myservice.net/cart/types”
xmlns=“http://www.w3.org/2000/10/XMLSchema”>
<complexType name=“item”><all>

<element name=“description” type=“xsd:string”/>
<element name=“quantity” type=“xsd:integer”/>
<element name=“price” type=“xsd:float”/>

</all></complexType>
</schema>
</types>

Messages
Describes de flow of information
A named collection of message parts
Each part has a name and a type

<message name=“AddItemInput”>
<part name=“cart-id” type=“xsd:string”/>
<part name=“item” type=“carttypes:item”/>
<part name=“image” type=“xsd:base64Binary”/>

</message>

Port Types
A named collection of related operations
Operations:

Have a signature (input, output and fault messages)
can be one-way, request-response, notifications or

solicit-response

<portType name=“ShoppingCart”>
<operation name=“AddItem”>

<input message=“tns:AddItemInput”/>
<output message=“tns:ACK”/>
<fault name=“BadCartID” message=“tns:BadCartID”/>
<fault name=“ServiceDown” message=“tns:ServiceDown”/>

</operation>
<operation name=“RemoveItem”> … </operation>
<operation name=“ListItems”> … </operation>

</portType>

Bindings

Bindings describe the protocol used to access
a service, as well as the data formats for the
messages defined by a particular portType

A binding is a named association of protocol
details with a port type, its operations and its
messages

Bindings
<binding name=“CartHTTPPostBinding” type=“tns:ShoppingCart”>

<http:binding verb=“POST”/>
<operation name=“AddItem”>

<http:operation location=“/AddItem”/>
<input>

<mime:content type="application/x-www-form-urlencoded”/>
</input>
<output>

<mime:content type="application/x-www-form-urlencoded”/>
</output>
<fault name=“BadCartID”> <mime:mimeXML/> </fault>

<fault name=“ServiceDown”> <mime … /> </fault>
</operation> …

</binding>

How WSDL Describes: Bindings
<binding name=“CartHTTPPostBinding”

type=“tns:ShoppingCart”>
<http:binding verb=“POST”/>
<operation name=“AddItem”>

<http:operation location=“/AddItem”/>
<input> <mime:content … /> </input>
<output> <mime:content …. /> </output>
<fault name=“BadCartID”> <mime …/> </fault>
<fault name=“ServiceDown”> <mime … /> </fault>

</operation> …
</binding>

Extensibility
Elements

Extensibility
Elements

Bindings: SOAP Binding
<binding name=“CartHTTPSOAPBinding” type=“tns:ShoppingCart”>

<soap:binding style=“RPC”
transport=“http://schemas.xmlsoap.org/soap/http”/>

<operation name=“AddItem”>
<soap:operation soapAction=“http://myservice.net/cart/AddItem”/>
<input>

<soap:body use=“encoded” namespace=“http://myservice.net/cart”
encodingStyle=“http://schemas.xmlsoap.org/soap/encoding”/>

</input>
<output>

<soap:body use=“encoded” namespace=“http://myservice.net/cart”
encodingStyle=“http://schemas.xmlsoap.org/soap/encoding”/>

</output>
<fault name=“BadCartID”> <soap:body use=“encoded” namespace= … />
</fault>
<fault name=“ServiceDown”> <soap:body use= … /> </fault>

</operation> …
</binding>

Ports
A named association of a protocol binding
with a network address

HTTP
SOAP

HTTP
POST

http://myservice.net/soap/cart

http://myservice.net/cart

<port name=“SOAPCart” binding=“tns:SOAPCartBinding”>
<soap:address location=“http://myservice.net/soap/cart”/>

</port>
<port name=“HTTPPostCart” binding=“tns:HTTPPostCartBinding”>

<http:address location=“http://myservice.net/cart”/>
</port>

Services
A related collection of ports

<service name=“ShoppingCartService”>
<documentation>A Shopping Cart for the Web</documentation>
<port name=“HTTPPostCart” binding=“tns:HTTPPostCartBinding”>

<http:address location=“http://myservice.net/cart”/>
</port>
<port name=“SOAPCart” binding=“tns:SOAPCartBinding”>

<soap:address location=“http://myservice.net/soap/cart”/>
</port>

</service>

Reusing WSDL Elements
<import namespace=“http://webservices.org/cart/cart-type”

location=“http://services.org/cart/cart-type.wsdl”/>
<binding xmlns:ws=“http://webservices.org/cart/cart-type”

name=“CartHTTPXMLBinding” type=“ws:ShoppingCart”>
…

http://xml.org/shopping/items.xsd

Shopping Cart

Add

Remove

List
AddItemInput

AddItemOutput
Shopping CartAdd

Remove
List

<soap:envelope …>
<soap:body>
<soap:fault>
<faultcode>…
<faultstring> …

</soap:fault>
<soap:body>

<soap:envelope>

http://webservices.org/cart/cart-type.wsdl

Shopping Cart Service

http://myservice.net/cart/cart.wsdl

HTTP
SOAP

HTTP
XML

http://myservice.net/soap/cart

http://myservice.net/cart

SOAP & WSDL

Analysing CalcClient Code

SOAP and WSDL
The SOAP code needs the URL of the
SOAP router:

String endpt=
call.setTargetEndpointAddress (endpt);

WSDL:
<service …

<port …
<soap: address location= />

“http://localhost:8080/axis/Calculator.jws”

SOAP and WSDL
The SOAP code needs the (namespace) of
the service:

call.setOperationName(new
QName(http://localhost:8080/axis..., args[1]))

WSDL:
<binding …

<soap: binding style=“ rpc” …
<operation name= “add”>

<input> ...
<soap: body namespace= “http://localhost:8080/...”

SOAP and WSDL
The SOAP code needs the name of the
method:

call.setOperationName(new
QName(http://localhost:8080/axis..., args[1]))

WSDL:
<binding …

<soap: binding style=“ rpc” …
<operation name= “add”

SOAP and WSDL
The SOAP code needs to fill in the
arguments.
WSDL

<portType name=“ Calculator”>
<operation name=“add”>

<input message= “intf:addRequest ” />

This tells us we need to use the
addRequest message as the input to the
method.

SOAP and WSDL
Now we can look at the addRequest
message:
<message name=" addRequest ">

<part name=“val1" type=“xsd:int"/>
<part name=“val2" type=“xsd:int"/>

</ message>
Therefore, we need two arguments
(val1, val2) of type Integer to call the
service

SOAP and WSDL
In practice, the SOAP client code is written using
a well- known programming interface.

the name of the method and the arguments to it will
be known beforehand.

The URL of the SOAP router and the ID of the
service can change,

The method name and parameters probably won’t.
The WSDL file provides all the information
needed to invoke a Web service

Automate the task of invoking Web Services
Tools to hide the details of WebServices Technology

Web Services
Platforms

What is a Web Services Platform?
Marshals Data Types

Serializes native language objects into XML
De-serializes XML into native language
objects

Publishes a Service Endpoint
Invokes a Service Handler or Chain of
Handlers
Generates WSDL Descriptions
Generates client and server stubs from
WSDL

Implementing WS

Java – Apache Axis

Apache Axis
A SOAP Processing Engine

JAX-RPC Client System
JAX-RPC Server System (Servlet based)
SAAJ implementation
Flexible and extensible architecture
Tools, Examples, Documentation, …
A great tool to learn (and produce) about Web
Services !!

Open-source
hosted by Apache Software Foundation

Axis Feature Set
“Drop-in" deployment of SOAP services
Support for all basic data types, and a type mapping
system for defining serializers/deserializers
Providers for RPC and message based SOAP
services
Automatic WSDL generation from deployed services
WSDL2Java tool for building Java proxies and
skeletons from WSDL documents
Java2WSDL tool for building WSDL from Java
classes.
HTTP servlet-based transport

Axis Architecture

Install & Deploy Apache Axis
Pre-requisites

J2SE SDK 1.3 or 1.4
A Servlet Container: i.e. Tomcat4.0.1

Download:
xml-axis-rc1-bin.zip
http://xml.apache.org/axis

Unzip it
Axis runs as a Servlet.

Deploy Axis.
Copy webapps\axis tree to webapps
directory of Tomcat.
Or modify server.xml of Tomcat.

Run Tomcat:
bin\startup from Tomcat home.

Direcotry Structure:

axis-1_0

docslibwebapps samples

axis

WEB-INF
lib
classes
web.xml
……

Test the Deployment
http://localhost:8080/axis
Select Validade ..

Calculator Example
Calculator:

A simple Java class with two methods to add and subtract two
integers.

The filename extension must be “.jws” (for Java Web
Service).
Deployment:

Copy the Calculator.jws file to webapps/axis directory.
Examine its WSDL description.

http://localhost:8080/axis/Calculator.jws?wsdl

public class Calculator {
public int add(int val1, int val2){
return val1 + val2; }

public int subtract(int val1, int val2) {
return val1 - val2; }

}

Writing the Client Program
Ways to write a Client program

Using Dynamic Invocation Interface (DII)
Using generated Stubs from Service WSDL description
Using Dynamic Proxy

CLASSPATH Setup:
xml-axis-beta2/lib/axis.jar
xml-axis-beta2/lib/jaxrpc.jar
xml-axis-beta2/lib/saaj.jar
xml-axis-beta2/lib/commons-logging.jar
xml-axis-beta2/lib/tt-bytecode.jar
xml-axis-beta2/lib/wsdl4j.jar
A JAXP-1.1 compliant XML parser such as xerces
+ app resources

CalcClient – Generated Stubs
Generate the stubs:

java org.apache.axis.wsdl.WSDL2Java \
http://localhost:8080/axis/Calculator.jws?wsdl

A service implementation (the
locator)

A service interface

A stub class

A java interface

A holder if this type is used as an
inout/out parameter

A java class

Java class(es) generated

CalculatorServiceLocator.java

CalculatorService.java
For each service

CalculatorSOAPBindingStub.javaFor each binding

Calculator.javaFor each portType

For each entry in the
type section

NameWSDL clause

CalcClient Program – Generated Stubs
import localhost.*;

public class CalcClient{
public static void main(String [] args) {
try {

CalculatorService srv = new CalculatorServiceLocator();
Calculator calc = srv.getCalculator();
System.out.println("addInt(5, 3) = " + calc.addInt(5, 3));

}
catch (Exception e) {

System.err.println("Execution failed. Exception: " + e);
}

}
}

Custom Deployment
Instant deployment (.jws) is simple, but
has limitations:

You must have the source code
Can’t specify custom type mappings, handlers etc.

Java2WSDL: Building WSDL from Java
Step 1: Provide a Java interface or class
Step 2: Create WSDL using Java2WSDL
Step 3: Create Client/Server Bindings using
WSDL2Java
Step 4: Use adminClient & Deployment Descriptor to
deploy the service

Step 1: Provide a Java interface or class

package calculator;

public interface Calculator extends java.rmi.Remote {
public int add(int in0, int in1)

throws java.rmi.RemoteException;
public int subtract(int in0, int in1)

throws java.rmi.RemoteException;
}

Step 2 - Java2WSDL – Generating
WSDL file

java org.apache.axis.wsdl.Java2WSDL \
-o calculator.wsdl \
-l “http://localhost:8080/axis/services/Calculator” \
-n "urn:Calculator"
-p “custom.deploy=urn:Calculator” \
custom.deploy.Calculator

WSDL file “calculator.wsdl”

Step 3: Create Client/Server Bindings using
WSDL2Java

Generate the classes:
java org.apache.axis.wsdl.WSDL2Java \
--server-side --skeletonDeploy true
calculator.wsdl
All classes generated without option “--server-side --
skeletonDeploy true” plus:

One Undeployment descriptor

One deplyment descriptor

An implementation template
class

A skeleton class

Java class(es) generated

Undeploy.wsdd

deploy.wsdd
For all services

CalculatorSoapBindingImpl.java

CalculatorSoapBindingSkeleton.java

For each binding

NameWSDL clause

Step 4: Provide the service
implementation

Insert the service code in the
Implementation template Class
Compile the source code
The service is ready for deployment

Step 5: Use adminClient & Deployment
Descriptor to deploy the service

java
org.apache.axis.client.AdminClient
deploy.wsdd

Don´t forget to start the Web server !

Copy the server class files to
TOMCAT_HOME\webapps\axis\
WEB-INF\classes

List of deployed services: java org.apache.axis.client.AdminClient list

Deployment Descriptors
WSDD (Web Services Deployment
Descriptors)

allow more flexible deployments
Handlers in request or response path
Custom type mappings
Different transports – HTTP/S, TCP/IP, DIME
Different Dispatchers – Java Class, EJB, Servlet

The Deployment Descriptor
<deployment

xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<!-- Services from CalculatorService WSDL service -->

<service name="Calculator" provider="java:RPC">
<parameter name="wsdlTargetNamespace" value="urn:custom.deploy"/>
<parameter name="wsdlServiceElement" value="CalculatorService"/>
<parameter name="wsdlServicePort" value="Calculator"/>
<parameter name="className"

value="deploy.custom.CalculatorSoapBindingSkeleton"/>
<parameter name="wsdlPortType" value="Calculator"/>
<parameter name="allowedMethods" value="*"/>

</service>
</deployment>

Additional Features
SOAP with Attachments
Custom type mappings (Pluggable
Serializers)
One-way invocations
Document exchange
Dispatch to EJBs
HTTPS transport and mutual
authentication
Username and password based
authentication

Calculator

Demo

Demo

Consuming a Web Service
Using Delphi

WSDL Bindings

HTTP Post & Get

HTTP GET & POST Binding

WSDL includes a binding for HTTP 1.1's GET
and POST verbs:

This allows applications other than Web Browsers to
interact with the site.

The following protocol specific information may
be specified:

An indication that a binding uses HTTP GET or POST
An address for the port
A relative address for each operation (relative to the
base address defined by the port)

HTTP GET/POST Examples
Consider 2 ports that are bound differently for a given
port type.
If the values being passed are part1=1, part2=2, part3=3,
the request format would be as follows for each port:
port1:

GET, URL="http://example.com/o1?p1=1&p2=2&p3=3
port2:

POST,
URL="http://example.com/o1",
PAYLOAD="p1=1&p2=2&p3=3"

For each port:
the response is either a GIF or a JPEG image.

<definitions >
<message name="m1">

<part name="part1" type="xsd:string"/>
<part name="part2" type="xsd:int"/>
<part name="part3" type="xsd:string"/>

</message>
<message name="m2">

<part name="image" type="xsd:binary"/>
</message>
<portType name="pt1">

<operation name="o1">
<input message="tns:m1"/>
<output message="tns:m2"/>

</operation>
</portType>
<service name="service1">

<port name="port1" binding="tns:b1">
<http:address location="http://example.com/"/>

</port>
<port name="port2" binding="tns:b2">

<http:address location="http://example.com/"/>
</port>

</service>
...

<binding name="b1" type="pt1">
<http:binding verb="GET"/>
<operation name="o1">

<http:operation location="o1"/>
<input> <http:urlEncoded/> </input>
<output>

<mime:content type="image/gif"/>
<mime:content type="image/jpeg"/>

</output>
</operation>

</binding>
<binding name="b2" type="pt1">

<http:binding verb="POST"/>
<operation name="o1">

<http:operation location="o1"/>
<input>

<mime:content type="application/x-www-form-urlencoded"/>
</input>
<output>

<mime:content type="image/gif"/>
<mime:content type="image/jpeg"/>

</output>
</operation>

</binding>
</definitions>

UDDI

Web Services Discovery

UDDI
UDDI = Universal Description, Discovery and
Integration of Web Services
UDDI project (www.uddi.org) is an industry effort
to define a searchable registry of services

started by IBM, MS and Ariba in Sept 2000
UDDI members > 200
currently at UDDI V3.0
plan to turn specification over to W3C at V3.0

UDDI not restricted to SOAP services
can be used for simple web page, email address, up
to full distributed apps

UDDI
Data within UDDI categorised into 3 types

white pages
basic contact info about companies
allows businesses to include unique ids

yellow pages
general classification info about the company or
service it offers (e.g. NAICS: industry codes,
UNSPC: product & service clsf, ISO: geog)

green pages
technical info about a web service
reference to an external specification (e.g. WSDL)
address for invoking the service

White
Pages

Yellow
Pages

Green
Pages

Service Descriptions
Programmatically unique identifier for any
given type of web service
Used by standards bodies, ISVs, and
developers to “publish” how their service
works
Used as a signature by web sites that
implement those interfaces
Stored in UDDI as “tModels”

businessEntity
businessKey
name
URL
description
contacts
businessServices
identifierBag
categoryBag

Phone
Address
Email

Contact

businessService

Phone
Address
Email

Contact

businessService
serviceKey
Name
Description
BindingTemplates

keyedReference
tModelKey
keyName
keyValue

keyedReference
tModelKey
keyName
keyValue

keyedReference
tModelKey
keyName
keyValue

keyedReference
tModelKey
keyName
keyValue

UDDI Registration

XML document
Created by end-user
company (or on their
behalf)
Can have multiple
service listings
Can have multiple
taxonomy listings

Example of a Registration

businessEntity
XY1032Ze54T2384wZ2f23100293
Harbour Flowers
www.harbourflowersltd.co.au
“Serving Inner Sydney Harbour for …
contacts
businessServices
identifierBag
categoryBag

872-6891
4281 King’s Blvd, Sydney, NSW
PeterSmythe22@hotmail.com

Peter Smythe

businessService
Key
Name
Description
BindingTemplates

businessService
23T701e54683nf…
Online catalog
“Website where you can …
BindingTemplates

BindingTemplate
5E2D412E5-44EE-…
http://www.sydneynet/harbour…
tModelInstanceDetails

tModelInstanceInfo

4453D6FC-223C-3ED0…
http://www.sydneynet.com.catalog.asp

keyedReference
DFE-2B…
DUNS
45231

keyedReference
EE123…
NAICS
02417

tModel References, each with
a unique identifier

How is UDDI used?
Business analysts:

to search for services
similar to search engine
portals needed

Developers:
to publish services
to write software that use the discovered
services

incorporated into toolkits:
to automate publishing of services

UDDI
Two parts

technical specifications for building a distributed
directory of business & web services, including

XML schema for describing the data structures used
API details for searching (find) & publishing (publish)

UDDI Business Registry (“cloud services”)
fully operational implementation
launched in May 2001 by MS & IBM

IBM

SAP Microsoft

Operator node

other

Registry Operation
Peer nodes (websites)
Companies register
with any node
Registrations replicated
on a daily basis
Complete set of
“registered” records
available at all nodes
Common set of
SOAP APIs supported
by all nodes

Business Entity
UDDI

SOAP Request

UDDI
SOAP Response

UDDI.org

replication

replication

other

UBR
content inserted into the UBR is done at a
single node which becomes master owner
of content
content can be accessed from any node
any business can set up an operator node
companies can set up:

private nodes
private clouds

Private Registries
Direct discovery
Include additional security features
Services only accessible within org or group of
trusted parties
Often charge is involved
Can be used for internal or B2B operations
Allows companies to provide personalised
services for clients
Companies are adopting private registries faster
than public

Types of Private Registries
e-marketplace UDDI

hosted by an industry, lists consortium member
businesses and services

portal UDDI
publishes a companies web services
find only available externally

partner catalog UDDI
resides behind firewall
available to member companies only
publish and find restricted to authorised users

internal UDDI
resides behind firewall
available to single organisation only

Why use UDDI?
Example: semi-conductor industry

>400 companies members of RosettaNet
consortium who created Partner Interface
Processes (PIPs)
PIPs = XML-based interfaces to allow
exchange of data
e.g. PIPs

PIP2A2 – query for product info
PIP3A2 – query price and availability of specific
products
PIP3A3 – submit e-purchase order
PIP3B4 – query shipment status

>80 individual PIPs registered within UBR

Advantages of UBR
service provider

effective method of advertising
global visibility market expansion

service consumer
simplifies using web services by making tech
specifications available

general
don’t have to pay to advertise or to discover

UDDI Software
Applications servers incorporating UDDI
server

BEA WebLogic, IBM WebSphere

Open source UDDI project
jUDDI (www.juddi.org)

J2EE compliant UDDI implementations:
Systinet, Cape Clear, HP, Oracle, SAP…

UDDI Limitations
Still evolving
Public Registries - data reliability?

no “last-updated” date
no checks for accuracy

Quality-of-service of a web service?
how often can it be accessed?
scalability?
tech support?
Etc.

UDDI and SOAP

Business Entity
UDDI

SOAP Request

UDDI
SOAP Response

UDDI
Node

HTTP
Server

SOAP
Processor

UDDI
Directory Service

B2B DirectoryCreate, View,
Update, and Delete
registrations Implementation-

neutral

Registry WSI (SOAP Messages)
Inquiry API

Find things
find_business
find_service
find_binding
find_tModel

Get Details about
things

get_businessDetail
get_serviceDetail
get_bindingDetail
get_tModelDetail

Publishers API
Save things

save_business
save_service
save_binding
save_tModel

Delete things
delete_business
delete_service
delete_binding
delete_tModel

security…
get_authToken
discard_authToken

Mapping From WSDL to UDDI

Mapping From WSDL to UDDI (Example)

Working with UDDI
Finding Services in UDDI

Services are found in UDDI using UDDI API
Services are found by name or by description

Binding
Once the service requestor has located the
service, it invokes the service at that location

Registries
IBM’s registry:

www. ibm. com/ services/ uddi/
Microsoft’s registry:

uddi. microsoft. com/
SAP registry:

http://uddi.sap.com/
NTT Communications:

http://www.ntt.com/uddi

UDDI4J
IBM has released UDDI4J:

an open source implementation of the client
side of UDDI.

AXIS, HP, WebSphere

Simplifies the task of interacting with a
UDDI registry.
UDDI4J web page:

www- 124. ibm. com/ developerworks/
projects/uddi4j.

Architecting WS

Today Usage of Web Services

Approach:
Direct exposure of components as Web Services
Is it Correct?

Granularity, coupling, amount of
implementation details, and levels of

abstraction at the component level are
inappropriate for Web Services

Granularity, coupling, amount of
implementation details, and levels of

abstraction at the component level are
inappropriate for Web Services

Direct Export - Problems
Exporting assumes that the exported
component can stand alone

Only works for simple models
What happens if operations return
sequence of references, or complex data
structures with embedded references?
Who does the mapping?

Direct one-to-one exporting of components to
Web Services is too cumbersome, and it
works only for simple demos

Web Services Examples
Some web services are already
accessible on the Internet

e.g., at http://www.xmethods.net/
Trivial RPC-oriented services, for example:

exchange rate calculators, stock quoters

Too low-level
e.g., stock quoter requires polling:

no callbacks provided
Fundamental issues ignored:

e.g latency

Application Choreography
Defines the “conversations” between
cooperating applications that allow them
to work together correctly
Web Services choreographies must take
business processes into account

trivial web services solve only trivial things
non-trivial web services must play a part in
business processes
business-to-business integration (B2Bi)
requires standardized choreographies

Web Service Choreographies
CORBA, EJB, etc. choreographies not
directly suitable for Web Services

too many implementation details leak through,
e.g. exceptions, component interdependencies

Instead, Web Services can integrate
multiple back-end component technologies
using process engines to avoid the need for
more hand-coding
Choreographies must completely hide
component-level implementation details

Web Service Choreographies(2)

Web Services have no object model
CORBA, EJB, etc. choreographies can’t be
directly exposed to Web Services clients
Web Services must wrap and abstract
existing component-based business logic

Externally-exported Web Services
choreographies require B2B standards
basis

needed to ensure correct and legally-agreed
interactions

Web Services at Multiple Levels
Source: Web Services and Component Technologies - Steve Vinoski (IONA)

Web Services System Architecture
Source: Web Services and Component Technologies - Steve Vinoski (IONA)

Web Services Evolution - BPM

Applying Web
Services Technology

Bioinformatics Application
Domain

Structural Genomic
Workflows Supported by

Web Services
Presented by Fernanda Baião

Maria Cláudia Cavalcanti, Fernanda Baião,
Shaila C. Rössle, Paulo M. Bisch, Rafael Targino,
Paulo F. Pires, Maria Luiza Campos,Marta Mattoso

Federal University of Rio de Janeiro - Brazil

Presentation Outline
Motivation

Web services technology

A bioinformatics workflow: The MHolLine

MHolLine suported by Web Services

Conclusion

Motivation
in silico scientific experiments

programs and data resources
Multiple combinations – scientific workflows
Complex to manage

Typical approach
Script languages (e.g.: Perl)

Script languages
Easy way to automate program calls
Work, but...

Typically are specific and hard to re-use
Hard-coded parameter values and program calls

Difficult to cope with changes

Script languages
Require

local infrastructure
Pre-installation of programs within local network

Data avalability

Remote programs and data
Requires web interfaces availability

Screen scrapping

Brittle and unreliable work

What if there are no web interfaces available?

What do bioinformatics projects
need?

Provides flexibility and interoperability facilities in
program and data access

Web services have been pointed out in the
bioinformatics area as a potential technology
to allow biological data to be fully exploited

[L. Stein, Nature 417, 2002]

Web services!

Why web services?
Interoperability among programs from different
platforms

SOAP protocol
Service interface description (data and
programs)

WSDL
Enables any program to understand how to interact

Service publication
UDDI

Service composition specification
BPEL4WS

Extensibility

The MHolLine Workflow
Bioinformatics workflow for the MHolLine structural
genomic project, under development at IBCCF/UFRJ
Sophisticated combination of programs that predict
the most reliable structure for a sequence using
related protein structures as templates

Protein
Sequences

Select
significant

matches as
templates

Align
sequence
with target
template

Search for
related

sequences

Build
model

Evaluate
model

Protein
Sequences

Protein
Sequences

Select
significant

matches as
templates

protein
models

Align
sequence
with target
template

Search for
related

sequences

Build
model

Evaluate
model

The MHolLine Workflow
Script language approach

Local programs and data
Specific set of programs and parameter values
Partial re-executions are needed, but not allowed

High-cost full executions
Many executions during in an experiment

Protein
Sequences

Selectsignificantmatches as templates Alignsequencewith targettemplateSearch for relatedsequences Buildmodel Evaluatemodel

Protein
Sequences

Protein
Sequences

BATS

protein
models

MODELLERBLAST MODELLER PROCHECK

The MHolLine Workflow
Web Services approach

Programs and data can be published and
further browsed to build a composition of
programs

Semantic information is available
Programs involved in the MHolLine
workflow were encapsulated into web
services

Interface changes are handled by the web
service wrapper

Web Services Architecture
Standard based, open
Service Provider

Access to remote codes
installed in different platforms
Legacy codes and data
sources can be available as
Web services
WSDL describes programs
and their binding information

Service Registry
UDDI: services classification
WSDL is extensible

Service Request
find: identify services
bind: gets WSDL
call: uses SOAP protocol

Web Services
Registry

Web Services
Provider

Web Services
Requestor

WSDL Document 1: publish

2:find

4: call

3: bind

Scientific Workflows
Web Services approach

BATS

Modeller

BLAST

BATS

Modeller

BLAST

BATS

Modeller

BLAST

BATS

Modeller

BLAST

BATS

Prog 1

Prog 2

Prog n

Interface

WSDL

WS Provider – MHOLline WS

Interface

WSDL

WS Provider – MHOLline WS

Interface

WSDL

WS Provider – MHOLline WS

WSDL

WS Provider –

WSDL

WS Provider – Sci Workflow WS

Interface

WSDL

WSDL

WSDL

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

WSDL

WSDL

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

WSDL

WSDL

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

WSDL

WSDL

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

MODELLER
Wraper

WSDL

WSDL

WS ProviderInterface

Prog 1
Wrapper

WSDL

WS ProviderInterface

Prog 2
Wrapper

WS ProviderInterface

Prog n
Wrapper

WSDL

WSDL

MHOLLine
Workflow
MHOLLine
Workflow
MHOLLine
Workflow

MHOLLine
Workflow
MHOLLine
Workflow
MHOLLine
Workflow
MHOLLine
Workflow
Scientificl
Workflow

WS
Requestor

WS
Requestor

WSWSWSWS
Requestor

PublicationWeb Services
Provider

1: publish

2:find

6: execute

7:bind, 8:call

WSDL Document

Meta
data

Code
Code

Data
Data

Experimentation

3: define wf

4: start experiment

Web Services
Registry

Navigation

5: instantiate wf

1: publish

user

publisher

SRMW Architecture

The MHolLine Workflow
Web Services approach

WS Provider – MHOLline WS

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

BLAST

BATS

Modeller

Interface

WS
Requestor

WSDL

WSDL

WSDL

MHOLLine
Workflow

WS Provider – MHOLline WS

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

BLAST

BATS

Modeller

Interface

WS
Requestor

WSDL

WSDL

WSDL

MHOLLine
Workflow

WS Provider – MHOLline WS

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

BLAST

BATS

Modeller

Interface

WS
Requestor

WSDL

WSDL

WSDL

MHOLLine
Workflow
MHOLLine
Workflow

WS Provider – MHOLline WS

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

BLAST

BATS

Modeller

Interface

WS
Requestor

WSDL

WSDL

WSDL

MHOLLine
Workflow

WS Provider – MHOLline WS

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

BLAST

BATS

Modeller

Interface

WS
Requestor

WSDL

WSDL

WSDL

MHOLLine
Workflow

WS Provider – MHOLline WS

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

BLAST

BATS

Modeller

Interface

WS
Requestor

WSDL

WSDL

WSDL

MHOLLine
Workflow

WS Provider – MHOLline WS

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

BLAST

BATS

Modeller

Interface

WS
Requestor

WSDL

WSDL

WSDL

MHOLLine
Workflow

WS Provider – MHOLline WS

WS Provider

Interface

BLAST
Wraper

WSDL

WS Provider

Interface

BATS
Wraper

WS Provider

Interface

MODELLER
Wraper

BLAST

BATS

Modeller

Interface

WS
Requestor

WSDL

WSDL

WSDL

MHOLLine
Workflow
MHOLLine
Workflow

Implemented and published using:
• Apache Tomcat 4.0.4 powered by the

AXIS engine
• IBM BPWS4J 1.0.1 (BPEL4WS)

The MHolLine Workflow
Web Services approach

Step 1: Encapsulate MHolLine programs as web
services

WSDL for each program
Code for mapping input and output data between Web services and
legacy programs
Web service is invoked through WSDL operations which includes
input and output messages

BATS

WSDL

WS Provider

Interface

BATS
Wraper

BATS

WSDL

WS Provider

Interface

BATS
Wraper

BATS

WSDL

WS Provider

Interface

BLAST
Wraper

BLAST

WSDL

<wsdl:portType name="BlastRunner">
<wsdl:operation name="runBlast">
<wsdl:input message="intf:runBlastRequest"/>
<wsdl:output message="intf:runBlastResponse"/>

</wsdl:operation>
</wsdl:portType>

The MHolLine Workflow
Web Services approach

Step 2: Define the MHolLine Workflow
The BPEL4WS language was used to formally specify the
composition of the programs
Each program is defined as a <partner>

Step 3: MHolLine is published as a web service

Interface

WS
Requestor

WSDL

MHOLLine
Workflow

WS Provider– MHOLline WS

Interface

WS
Requestor

WSDL

MHOLLine
Workflow

WS Provider– MHOLline WS

Interface

WS
Requestor

WSDL

MHOLLine
Workflow

WS Provider MHOLline WS

Interface

WS
Requestor

WSDL

MHOLLine
Workflow
MHOLLine
Workflow

<partners>
<partner

name="providerblast"
serviceLinkType="blastns:blastSLT"/>

...
<partner

name="providermodeller"

serviceLinkType="modns:modellerSLT"/>
</partners>

165

The MHolLine Workflow
Web Services approach

Step 4: Program composition is defined
MHolLine partners should be sequentially executed (<sequence>)

Input message (<receive>)
Service invocation (<invoke>)
Output message (<reply>)

<sequence name="WorkflowSequence">
<receive name="receive" partner="caller" portType="tns:runnerPT“

operation="runnerOP" container="request" createInstance="yes"/>

...
<invoke name="invoke" partner="providerblast"

portType="blastns:BlastRunner" operation="runBlast"
inputContainer="blastrequest" outputContainer="blastresponse"/>

...

<reply name="reply" partner="caller"
portType="tns:runnerPT" operation="runnerOP"
container="response"/>

</sequence>

The MHolLine Workflow
Web Services approach

Step 5: Execute the MHOLline workflow for a molecular
sequence

Workflow
WS

Blast
WS

BATS
WS

Modeller
WS

Caller

<receive>

<invoke>

<invoke>

<invoke>

<reply>

(molecular
sequence)

(target
sequences)

(Modeller scripts)

(molecular 3D coordinates)

Workflow
WS

Blast
WS

BATS
WS

Modeller
WS

Caller

<receive>

<invoke>

<invoke>

<invoke>

<reply>

(molecular
sequence)

(target
sequences)

(Modeller scripts)

(molecular 3D coordinates)

The MHolLine Workflow
Web Services approach

Discussion
Every step of the MHOLline workflow was
automatically executed, with no human interaction
BPEL4WS is an expressive language

verify data input values
start parallel executions
allow workflow shortcuts

Different configurations of MHOLline workflow can be
easily accommodated with the web services approach

different parameter values
alternative programs

Flexible for building other scientific workflows
definitions

168

SRMW Architecture
Web services alone are not enough

Handles interoperability among programs from different
platforms
Encapsulates program and data resources

SRMW SRMW architecturearchitecture
Guides the use of the web service technology
Metamodel

Organizes semantic issues
Represents an application domain
Defines model and program categories, and data categories

e.g., BLAST x BLAST-P
Generic mechanisms for data and program representation

Provides semantic interoperability
Service publication

Enables navigation and interactive service composition
workflow definitions

Conclusion
Rapid growth of the bioinformatics area

Raises a lot of management issues to e-
scientists
Vast amount of programs and data resources

Web services is on the right track to a full-
featured e-scientist lab

Need for interoperable, flexible and scalable
environments
Superior when compared to the script
languages approach

Overcomes platform incompatibilities
Allows ad-hoc services compositions, allows workflows as part of
new service compositions

Conclusion
Show how web services technologies can be used

bioinformatics workflow (“MHolLine”)
Web services alone are not enough

lack application-related semantic descriptors
Metadata support + web services within a framework
that supports scientific workflows

SRMW architecture
On the way to data provenance and derivation

User access is controlled
Web services messages could be easily interpreted to
provide mechanisms for capturing and organizing user
experiments

Web Services and the
Semantic Web

Web Services and the Semantic Web
Complementary Goals

Semantic Web
It’s about making links between information more
intelligent.

Transactional Web (Web Services)
It’s about improving the way information is
exchanged

Web Services and the Semantic Web
Different Points of View

Semantic Web
Derives the puzzle-pieces from the big picture

Transactional Web
Derives the big picture from the puzzle-pieces

Web Services and the Semantic Web
Meeting in the middle

Semantic Web
Provides a formal data-model for Web Services

Transactional Web
Provides a technology foundation for the Semantic
Web

Concluding Remarks

What business value do
Web Services provide?

Business Value of Web Services

Reduced time-to-market

Fewer Development Risks

New revenue streams

System Reusability

Fewer Development Risks
Web Services represent industry standards:

standardized protocols (HTTP and SMTP)

standardized message formats (SOAP and XML-RPC)

standardized service description (WSDL)

standardized registry service (UDDI)

The use of common standards in development reduces

the costs and risks in involved because there are fewer

variable factors

New Revenue Streams
Componentized E-Services

Web Services represent the next step in the evolution of the

Application Service Provider (ASP) business model

Stock quotation engines, sports scores, currency rates, loan

amounts/rates, and traditional office applications will all be

offered on a fee-per use or subscription basis

Dynamic Smart Services

Real-time virtual auctions for everything from home loans, to

used college textbooks, to gasoline

Ability to search for the best bargain in real-time

New Revenue Streams
Mobile Device Utilization

Web Services open the door to the wireless world by relying

upon standard industry formats and protocols

Due to the small memory footprint, the utilization of standard

formats and standard protocols is crucial

Examples:
Purchase a coke with your cell phone

Allow doctors to perform a real-time query comparing a patient’s
symptoms with known diagnoses

Access your home’s computer system, your bank account, and your
travel arrangements via a handheld device

System Reusability
Increased Efficiency

Maintain a library of interchangeable, extensible components
that communicate via standardized formats over standardized
protocols

“Develop Once, Sell Everywhere”
Develop an application or suite of applications and have them
expose their interfaces as Web Services, then resell this
package to multiple clients

Create an application that processes insurance claims for a
hospital. Then turn around and resell this solution to 10, 20, or 100
other hospitals. Since the system is accessed via standardized
interfaces, integration is quick and easy

Reduced Time-to-Market

If clients are charged exactly the same, but you
are able to fulfill the needs of 10 times more

clients than before…$$$

If you are developing components and systems with:

fewer development risks

reusable code libraries

reusable systems that can be easily configured and accessed by

other systems

Then the result will be a faster development cycle and a quicker

deployment schedule

Business Value of Web Services

Reduced time-to-market

Fewer Development Risks

New revenue streams

System Reusability
= $$$= $$$

Web Services Technologies
Source: Web Services and Component Technologies - Steve Vinoski (IONA)

Phases of Web Services
Utilization

Internal projects:
integration among divisions, etc.

External reach:
select partners

External market:
consumption on demand

Summary
The Web services framework is being defined,
standardized and supported by the industry at a record
pace.

Broad industry acceptance and standard compliance
will make it ubiquitous.

Will bring an unprecedented level of interoperability to
Web applications.

The benefits of Web services, however, are not limited
to the Web!

The Web Services tecnology aggregates real Business Value
The Web services Stack is already growing …

Resources
Web Services Activity

http://www.w3.org/2002/ws/

SOAP W3C Working Drafts - 17 December 2001
http://www.w3.org/2002/ws/#drafts

SOAP 1.2
Primer
Messaging Framework
Adjuncts

XML Protocol Drafts

WSDL W3C Note Released March 2001
http://www.w3.org/TR/wsdl

WSDL Schema Specifications
Base Definition: http://schemas.xmlsoap.org/wsdl/
SOAP Extension: http://schemas.xmlsoap.org/wsdl/soap/

Resources

UDDI
http://www.uddi.org

Web Services Directory
http://www.xmethods.net
http://www.salcentral.com

Online Web Services Tools
http://www.soapclient.com

